REACTION OF TERTIARY PHOSPHINE DICHLORIDES WITH THIOLS IN THE PRESENCE OF TRIETHYLAMINE. A CONVENIENT METHOD FOR THE REDUCTION OF PHOSPHINE OXIDES TO PHOSPHINES

Mitsuo MASAKI and Kiyoshi FUKUI
Polymer Research Laboratory, Ube Industries, Ltd.,
Minami-kaigan, Goi, Ichihara, Chiba 290

The reaction of phosphine dichlorides with 1- or 2-alkanethiols or benzenethiol in the presence of triethylamine and subsequent distillation afforded phosphines and disulfides in good yields. The reaction was shown to be useful for reduction of tertiary phosphine oxides to the corresponding phosphines.

Tertiary phosphine dihalides, which are readily derivable from tertiary phosphine oxides, 1) can be reduced to the corresponding phosphines. The known reagents for the reduction are inorganic materials including phosphorus, 2) hydrazine, 3) metal hydrides, 4) and various metals 5) or organometallic compounds, such as butyllithium and phenylmagnesium bromide. 6) We wish report here the reaction of tertiary phosphine dichlorides with thiols in the presence of tertiary amine yielding the corresponding phosphines and disulfides in good yields (Eq. 1). This reaction provides a useful method for converting phosphine oxides into phosphines.

$$R_3^{PCl}_2$$
 + 2 H-SR' $\xrightarrow{\text{2 Base}}$ Distn. R_3^{P} + (R'S)₂ Eq. 1

Tributyl- or triphenyl-phosphine dichloride could be most conveniently prepared in <u>situ</u> by the treatment of the respective phosphine oxide with an equimolar amount of oxalyl chloride (OxCh, Eq. 2) or a half molar amount of trichloromethyl chloroformate (TCF, Eq. 3) in benzene or toluene. A typical procedure for the

$$R_3PO$$
 + $(COC1)_2$ \longrightarrow R_3PC1_2 + CO + CO_2 Eq. 2

$$2 R_3PO + ClCOOCCl_3 \longrightarrow 2 R_3PCl_2 + 2 CO_2$$
 Eq. 3

reduction is the following.

A solution of oxalyl chloride (5.08 g, 40 mmol) in benzene (20 ml) was added drop by drop to a solution of tributylphosphine oxide (8.73 g, 40 mmol) in benzene (80 ml) at room temperature, thereby a vigorous evolution of gas occurred. Total amount of the gas evolved was ca. 1820 ml. To the resulting suspension of tributylphosphine dichloride were added drop by drop a solution of ethanethiol (4.97 g, 80 mmol) in benzene (20 ml) and subsequently a solution of triethylamine

(8.09 g, 80 mmol) in benzene (20 ml) at room temperature. After removal of the resulting triethylamine hydrochloride by filtration, the mixture was stripped of solvent under reduced pressure. The residue was then distilled. The yields of the products are recorded in Table 1.

		•			
Reactants	Yields of Products (%)				
Chlorinating Agent	R'SH	NEt ₃ ·HC1	R ₃ P	(R'S) ₂	R ₃ PS
OxCh	EtSH	95	77	70	6
OxCh	EtSH	86	53	53	24
TCF	i-PrSH	98	84	81	trace
ОхСh	BuSH	82	49	57	36
TCF	С _я н ₁₇ SH	95	83	78	3
TCF	PhSH	100	68	77	0
OxCh	PhSH	100	87	100	0
	Chlorinating Agent OxCh OxCh TCF OxCh TCF	Chlorinating Agent R'SH OxCh EtSH OxCh EtSH TCF i-PrSH OxCh BuSH TCF C8H17SH TCF PhSH	Chlorinating Agent R'SH NEt3·HCl OxCh EtSH 95 OxCh EtSH 86 TCF i-PrSH 98 OxCh BuSH 82 TCF C8H17SH 95 TCF PhSH 100	Chlorinating Agent R'SH NEt3·HC1 R3P OxCh EtSH 95 77 OxCh EtSH 86 53 TCF i-PrSH 98 84 OxCh BuSH 82 49 TCF C8H17SH 95 83 TCF PhSH 100 68	Chlorinating Agent R'SH NEt3·HC1 R3P (R'S)2 OxCh EtSH 95 77 70 OxCh EtSH 86 53 53 TCF i-PrSH 98 84 81 OxCh BuSH 82 49 57 TCF C8H17SH 95 83 78 TCF PhSH 100 68 77

Table Reduction of Phosphine Oxide

The best yields of tertiary phosphines were obtained by the use of 2-propanethiol or 1-octanethiol for tributylphosphine dichloride and benzenethiol for triphenylphosphine dichloride, respectively.

The reaction of tertiary phosphine dihalides with alkanethiols in the absence of tertiary amine results in formation of alkyl halides and phosphine sulfides. 7)

References

1) a) Ger. Patent 1,192,205; Chem. Abstr., 63, 8405; b) Ger. Patent 1,618,130; Chem. Abstr., 75, 49331 (1971).

- 2) G. Wunsh, K. Winterswerger, and A. Geierhaas, Z. Anorg. Allg. Chem., 369, 33 (1969).
- 3) a) R. Appel, B. Blaser, and G. Siegemund, Z. Anorg. Allg. Chem., 363, 176 (1968);
- b) Ger. Patent 1,221,220 (1966); Chem. Abstr., 65, 15427 (1966).

- 4) a) L. Horner, H. Hoffmann, and P. Beck, Chem. Ber., 91, 1583 (1958); Quin and D. A. Mathewes, J. Org. Chem., 29, 836 (1964); c) G. Markl and H. Olbrich, Angew. Chem. internat. Edit., <u>5</u>, 588 (1966).
- 5) a) L. Horner, P. Beck, and H. Hoffman, Chem. Ber., 92, 2088 (1959); Patent Appl. 6,501,268 (1965); Chem. Abstr., 64, 2127 (1966); c) U. S. Patent 3,780,111 (1973); Chem. Abstr., 80, 60039 (1974).
- 6) D. B. Denney and F. J. Gross, J. Org. Chem., <u>32</u>, 3710 (1967).
- 7) a) U. S. Patent 3,624,159 (1971); Chem. Abstr., <u>76</u>, 46304 (1972); Patent 3,763,241 (1973); Chem. Abstr., 79, 137275 (1973).

(Received November 29, 1976)